Stability and accuracy of adapted finite element methods for singularly perturbed problems

نویسندگان

  • Long Chen
  • Jinchao Xu
چکیده

The stability and accuracy of a standard finite element method (FEM) and a new streamline diffusion finite element method (SDFEM) are studied in this paper for a one dimensional singularly perturbed connvection-diffusion problem discretized on arbitrary grids. Both schemes are proven to produce stable and accurate approximations provided that the underlying grid is properly adapted to capture the singularity (often in the form of boundary layers) of the solution. Surprisingly the accuracy of the standard FEM is shown to depend crucially on the uniformity of the grid away from the singularity. In other words, the accuracy of the adapted approximation is very sensitive to the perturbation of grid points in the region where the solution is smooth but, in contrast, it is robust with respect to perturbation of properly adapted grid inside the boundary layer. Motivated by this discovery, a new SDFEM is developed based on a special choice of the stabilization bubble function. The new method is shown to have an optimal maximum norm stability and approximation property in the sense that ‖u − uN‖∞ ≤ C infvN∈V N ‖u − vN‖∞, where uN is the SDFEM approximation in linear finite element space V N of the exact solution u. Finally several optimal convergence results for the standard FEM and the new SDFEM are obtained and an open question about the optimal choice of the monitor function for the moving grid method is answered. Mathematics Subject Classification (2000) 65L10 · 65L20 · 65L60 · 76R99 This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang Professorship through Peking University. L. Chen (B) · J. Xu Department of Mathematics, University of California at Irvine, Irvine, CA, USA e-mail: [email protected] J. Xu The School of Mathematical Science, Peking University, Beijing, China e-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

An Optimal Uniform a Priori Error Estimate for an Unsteady Singularly Perturbed Problem

We focus ourselves on the analysis of the solution of unsteady linear 2D singularly perturbed convection–diffusion equation. This type of equation can be considered as simplified model problem to many important problems, especially to Navier– Stokes equations. The space discretization of such a problem is a difficult task and it stimulated development of many stabilization methods (e.g. streaml...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2008